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DISCRIMINATION BETWEEN STATIONARY GAUSSIAN PROCESSES, LARGE SAMPLE RESULTS* 

1. Introduction. 

by 

Will Gersch 
University of Hawaii 

The problem considered is that of discriminating between stationary 

Gaussian random processes. That is, assume that a sample function 

y = (y(l), ••. ,y(n)) is hypothesized to be a sample function from one of 

two alternative processes, with each process characterized as a zero 

mean covariance matrix function stationary Gaussian process. The objective 

is to determine the structure of the minimum classification error decision 

procedure and to compute the probability of misclassification. This work 

was primarily stimulated by a paper by Grenander [1] in Which it was 

demonstrated that for scalar processes the probability of classification 

error decreased geometrically with n the number of observations. That 

result was achieved by Laplace's method for the evaluation of integrals 

in terms of the limiting distribution of the eigenvalues of a block Toeplitz 

matrix. The results in this paper are achieved by elementary moment 

analysis methods. 

* Supported in part by NSF Grant ENG 74-09883 at the University of Hawaii. 
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2. Analysis. 

1. Structure of the decision procedure: Assume that the 

observation matrix y = (y(l), •.. ,y(n)) of the d-component vectors 

y(j), j = l, ••. ,n is a sample function from one of two alternative 

finitely generated zero mean stationary completely non-deterministic 

random processes. Introduce the notation, H ' m m = 1,2, to denote 

the alternative hypotheses and assume that the a priori probability 

of H
1 

and H
2 

are equaL Then, the minimum probabil:j. ty of error 

decision procedure to distinguish the alternative hypotheses is to 

compute 2 x log-likelihood ratio (LR) statistic Ln(y), 

L (y) 
n 

1 f (y ( 1 ) ••• y ( n) ) 
2 .en 

2 
f (y(l)· • ·y(n)) 

(1) 

and to decide H1 : if Ln(y) ~ 0 and H2 otherwise. In Equation (1) 

the superscripted quantities rm(y) denote the probability density 

function of the observation vector y under the m-th hypothesis. 

In general the n vector of dependent normal observations 

y (y(l), ••• ,y(n)) can be orthogonalized to the form 

f (y ( 1), •.. , y ( n) ) f(e(l), ••. ,e(n)) = 

nd 1 

= (2rt)-
2 -IT IJ:tJ-

2 exp-[·~(e 1 (t)[t-1e(t)). 
t=l 

In Equation (2) and the following unless otherwise identified, lower 

case letters denote vectors and upper case letters denote matrices, 
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an apostrophe indicates matrix transposition and /A/ denotes the deter-

minant of matrix A. A Gram-Schmidt procedure is one satisfactory way to 

accomplish the orthogonalization. Inverse filtering and least squares 

prediction methods are alternative interpretations of the orthogonalizations 

[2]. At this point it is helpful to interpret Equation (2) in the light 

of some more particular structure and notation. 

Using the Wold representation theorem, the assumption that y(t) 

is completely non-deterministic is equivalent to the statement that 

it can be represented as 

co 

y(t) E[E(t)] 0 ' E[E(t)EI (s)] V5t • ,s 

That is, the {y(t)} process can be thought of as the output of a 

linear filter with matrix impulse response {ht} whose input is the 

stationary zero mean uncorrelated sequence ( E( t) L Corresponding to 

the y(t) process, a zero mean 11 residual" process {e(t)} can be 

identified as the process that is produced by a filter inverse to 

(ht} acting on the y(t) process. Equivalently (e(t)} can be 

interpreted as the process representing the difference between y(t) 

(3) 

and its least squares estimate y(t). Let the sequence e(l), ••. ,e(n) 

in Equation (2) be a finite sample function of the e(t) process. In 

general as identified in Equation (2) the sequence e(l), ••• ,e(n) need 

not have stationary covariances. 

Identify the Wold, moving average (MA) or innovations representa-

tion of Equation (3) for the different classes of processes considered 
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in the operator notation 

v 5 m t,s m 1,2 0 

Then from the inverse filter point of view, in operator notation the 

inverse of the k=th process, k = 1,2, may be written 

k 1,2 • 

(The assumption that y (t) is finitely generated implies that the 

filter can be thought of as computed from a realization of the y(t) 

unknown parameters of the y(t) process.) Now consider the least 

squares estimator interpretation of the orthogonalization of the y 

sequence. It is known that ~ (t) the least ,sq.uares estimator of 

y(t) is the conditional mean of y(t) given the past of y(t) and 

that for Gaussian processes the estimator is a linear function of the 

data,. Thus 

- I Ai y(t-i) 
i=l 

(4) 

(5) 

(6) 

where (Ai} are dxd coefficient matrices" Thus identify the residual 

process e(t) by 

L A. y(t-i) ) 
i=O 

1 
A 

0 
I . (7) 

The infinite autoregressive (AR) representation of the residual process 

in Equations (7) and (5) as the inverse filter is purely formal and 

extremely convenient. It does not exclude alternative Markovian or 

Kalman filter type interpretations. When the y(t) data sequence 
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is finite, the AR coefficient matrices become functions of time, 

As Grenander, our concern is with an asymptotic theory. Thus as 

n increases and the effects of initial conditions diminish, the 

residual process tends toward a stationary process. That is, the 

time indexed coefficient matrices Ait and Lt tend to the constant 

matrices Ai and V respectively. Applying the forgoing considera-

tions to the distribution of 

statistic 1 (y) we obtain~ 
n 

l 
f (y) .~ i(y) in the likelihood ratio 

1~mm~~· The asymptotic log~likelihood ratio statistic for 

distinguishing between alternative stationary Gaussian time series 

is 

1 (y) 
n n log 

n 2 -1 2 n 1 1 l 
[ e (t) 1 V2 e (t) - L e (t) 1 V- e (t) 

t=l t~l l 

(8) 

In Equation (8) em(t) is the residual at time t obtained by 

filtering the observed y(t) process with the m-th model inverse 

filterJ m = 1,2. The optimal decision procedure thus involves the 

application of an inverse of filter to the observed data sequence 

y(l),~ •. ,y(n). Calculation of the 1R statistic in Equation (8) and 

application of the decision rule, decide H1 
if 1 (y) > 0 n -

and 

decide H2 otherwise. The optimum decision procedure structure is 

illustrated in Figure 1. 
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Figure 1. The structure of the LR decision procedure. 
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2. Statistics of the Log-Likelihood ratio test: 

Lemma 2., The log-likelihood ratio test satistic is asymptotically 

normally distributed with conditional means and variances 

m = 1,2; 

(Explicit formulas for are in Lemmas 3 and 4 ) • 

1-tm' 
2 

() 
m 

Proof. The LR statir;;tic, Equation (8) is the sum of sums of 

dependent quadratic terms. Under conditions on the rate of decay of 

dependence: that are difficult to ascertain, each of the sum of terms 

(9) 

tends toward a normal distribution. On the other hand, each of the sum 

of terms is in the form 

n 
L e(t)'V-1e(t) 

t=l 

n 
L tr(e(t)e(t)'V-1 ) 

t=l 

-1 n tr[ Cee (0 )V ] 

In Equation (10) tr[A] is the trace of matrix A, tr[AB] = tr[BA], 

(10) 

Cee(O) is the sample covariance matrix of a residual process calculated 

at zero lag and V is a theoretical (constant) residual variance matrix. 

Based upon the earlier work of Diana.nda [3] and Walker [4] and following 

Hannan [5] and Anderson [6] the elements of Cee(O) are asymptotically 

normally distributed. Thus Cee (0) and Cee v=l have multi variate 

normal distributions and asymptotically ~·1 tr(Cee(O)V ) has a limiting 

scalar distributionv Following Hannan, a sufficient condition for 
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normality of the sample covariance is that if (ht} is the impulse 

response matrix of the e(t) process that ~ ;=O /tht/ < 00 
• Explicit 

formula for {ht} are given following Lemma 3 and this condition is 

seen to be trivially satisfied. Lemma 2 expresses the situation of 

preimary interest, the distribution of the LR statistic under the 

alternative hypotheses. The conditional means and variances of the 

limiting distribution of the log-likelihood ratio statistic are computed 

next,. 

~a_3" Time and frequency domain formula for the conditional 

mean and variance of the LR statistic are; 

== 2 J f 1
(y)£n f~(y) dy == fJl ?;; 2n I(L2) 

f (y) 

Jtn lv21 + tr {l/2 sl(f)S2(f)-ldf-d] (a) 

L lv1 / - -1/2 

[ 
I v) [ ::.'. 1 2 1 2' -1] J ntn---+tr} (h.' Vh.' )V -d (b) 
/v I j~o J 1 J 2 

1 

-2ni(2;1) 

(c) 

In Equation (11) by definition, 1(1:2) is the Kullback:-Liebler [7] 

measure of the amount of information per observation to decide H
1 
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instead of H2 when H
1 is true, 

spectral densities of the {y1 (t)} 

S (f) m = 1,2, are the power m 

and {y2 (t)} process respec-

tively and hk,m is the impulse response of the residual ek'm(t) t 

process, (hk,m = Amhk) the process formed by acting on the process 
k 

y ( t) with the model corresponding to the inverse of the m-th 

process" The time and frequency domain formulas in Equation (11) 

are new. 

Proof. Consider the conditional expectations of each of the terms 

in Equation (8) separately. Then, 

n 1 1 1 
tr[ ( I e (t)e (t)' !H1 )V~ ] = 

t=l 
nd , (12) 

because 

n 1 1 1 1 
E ( I e ( t ) e ( t ) 1 j H

1 
) = n E [ C e e ( 0 D = n V 

1 
• 

t=l 

Then, too, 

~ 2' -1 2 I ~ 2 2 I -2 E[ L.. e (t)V2 e (t) H1 ] = tr E[( L.. e (t)e (t)' H1 )V2 ]. 
t=l t=l 

(13) 

Now by definition of the e2
(t) process 

(14) 
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Direct expansion of the operator expressions in Equation (14) yields 

the result 

(15) 

Digression: It is convenient here to think of ~ as the AR process 
l 

coefficient matrices in the representation of ym(t) .. Thus we observe 

that hk,m = I hk,k = Iot 
0 ' t 

and 
km - kk 

Var(e' (t))2:Var(e' (t)) with 

equality if and only if m = 1. These conclusions are a direct conse-

quence of the relationship between the AR and MA representations 

of a stationary process. Thus in the AR and MA representations 

k 
== E (t) • 

From this we obtain the useful recursive relationships for 

00 k k 
(~) (hk) I ' 

hk ""' A.ht . ' t - 2. t i=l 
l ~l 

1,2, ••• 

00 

(hk) (Jf) 
I ' 

Ak = I hkAk 
j 

hk 
t i=l t t-i 

0 

Returning to the proof of the lemma; 
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k k 
A. ,h. 

l l 

(16) 

(17) 



n 
tr i 

t==l 

(:t-8) 

In Equation (18) we made repeated use of the matrix interchange property 

of the trace operation, and the fact that for stationary process the 

covariance function and spectral densities are Fourier transform pairs. 

We also used the formulas for the spectral density of a process 
_,_ -1 -1-!-

S(f) = hVh' =A VA ' where h and A are the usual polynomial matrix 

frequency domain operators, [2] and the dagger denotes complex 

conjugate transpose. The combination of the methods and results in 

Equations (13)-(18) yield the frequency domain formulas for the condi-

tional mean LR statistic in Equation (lla and llc), Shumway and Unger 

[8] proved a result similar to Equation (16) for the scalar case via a 

limiting distribution of the eigenvalues of a Toeplitz matrix development, 

The frequency domain formulas for the Kullback-Liebler numbers, 

Equations (lla and llc) may be computed by a variety of techniques. 

The corr~sponding time domain formulas, Equations (llb and lld) are 

very satisfactorily computed by an approximating sum. The time domain 

formulas may pe obtained directly starting with Equation (l4). Using the 

matrix interchange property of the trace, the formula in Equation (13) 

for e
2

(t)/H1, and the fact that E[e1 (t)e1 (t)' /H1 J = V1_, 

ll 



(19) 

A side point is that a useful interpretation of the Kullback-Liebler 

measure, taken directly from the definition in Equation (11) is, 

(20) 

That is, the value of the likelihood (incremental probability) of the 

observed sequence y(l), ... ,y(n) under the assumption of model 2 when 

process 1 is true, is on the average exp -ni(l:2) times the value of 

the likelihood of that sequence under the assumption of model 1, the 

true model of the observe~ process. 

LEMMA 4. The conditional variances of the LR statistics are 

2 
(Jl 

where 
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Proof: This lemma is a computational result that requires computation 

of the conditional variance of the summed terms in the LR statistic 

in Equation (8) and the covariance of those terms. These are only 

second moment computations, they follow the spirit and the technique 

of the computations for the previous lemma. Therefore the obvious 

algebraic details are omitted. Consider computation of the conditional 

variance of the first summed term in Equation (8). Using the formula 

2 2 Var(X) = E[X ]-E [X] we write 

d d n n 
E[ I 2: ~ I ~.(t)~.(t)~ (s)e (s)J. 

r=l j=l t=l s=l J J r r 

(23) 

To obtain Equation (23) we employ the upper-lower triangular factorization 

and identify the components 
- 2' -1 ~ ,~. ej(t) via the multiplication e (t)U (V2 ) = [e1 (t),,,,.,ed(t)]. Then, 

recall the known result for normally distributed random variables 

(24) 

Apply this result in Equation (23), recombine terms and employ direct 

evaluation to obtain 

~ 2 1 -1 2 n ~ 2 2 -1 2 Var[ L e (t)V2 e (t) IH] = 2 L, L (tr E[e (s)e (t)'V2 ] ) 
t=l t=l S=l 

(25) 
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where rk,m rk,m are as defined in Equation (23). 
r ' -r 

Similarly, 

n l -1 l 
Var ( L e ( t ) 1 V 1 e ( t ) I H~ ) n ~ l l -1 2 = 2 I L, (tr E[e (~)e (t)'V1 ] ) = 

2 2nd , 
t=l t=l S=l 

(26) 

The covariance terms may be evaluated as 

THEOREM. The asymptotic probability of classification error between 

stationary Gaussian processes is bounded exponentially with n, the 

number of observations" 

Proof, By virtue of the fact that the LR statistic is asymptotically 

normal, consider direct evaluation of classification error under H1 . 

Assume I-ll > IJ.
2

• Then 

In Equation (28), by elementary 

~~ are linearly proportional to 

considerations IJ.l > 0. Since IJ.l 
I-ll -

n, ex = - = -/n c1 > 0. Thus 
~l 

14 

(28) 

and 



1-cll(CX) < l 
- ..(21f. a 

~XP (- ~) = --
1
,....._,... exp (- ~i ) . /2ri nc1 

The bound is obtained by integ~~tion by parts (i.e., Mills' ratio). 

Similar result~ are obtained for Pn(erroriH2 ) and the alternative 

assumption that ~l < ~2 • 

Discussion. 

This paper presents a general result on the asymptotic theory of 

the discrimination between ~ultivariate stationary Gau~sian random 

(29) 

processes. The res~lt that tne asymptotic probability of error bounded 

exponentially with ~ i~ ~t+o~er than that achieved by Grenander. 

Also important, this analysis rea4i~y suggests implementations to 

achieve minimum classificatiop. erro~ between station,ary random processes. 
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